Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Blind Correction of Optical Aberrations

MPG-Autoren
/persons/resource/persons84198

Schuler,  CJ
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons83969

Hirsch,  M
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons83954

Harmeling,  S
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons84193

Schölkopf,  B.
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Schuler, C., Hirsch, M., Harmeling, S., & Schölkopf, B. (2012). Blind Correction of Optical Aberrations. In A. Fitzgibbon (Ed.), Computer Vision - ECCV 2012 (pp. 187-200). Berlin, Germany: Springer.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000E-FE03-4
Zusammenfassung
{Camera lenses are a critical component of optical imaging systems, and lens imperfections compromise image quality. While traditionally, sophisticated lens design and quality control aim at limiting optical aberrations, recent works [1,2,3] promote the correction of optical flaws by computational means. These approaches rely on elaborate measurement procedures to characterize an optical system, and perform image correction by non-blind deconvolution. In this paper, we present a method that utilizes physically plausible assumptions to estimate non-stationary lens aberrations blindly, and thus can correct images without knowledge of specifics of camera and lens. The blur estimation features a novel preconditioning step that enables fast deconvolution. We obtain results that are competitive with state-of-the-art non-blind approaches.}