English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

On Causal and Anticausal Learning

MPS-Authors
/persons/resource/persons84193

Schölkopf,  B.
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons75626

Janzing,  D
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons84135

Peters,  J.
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons84212

Sgouritsa,  E
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons84328

Zhang,  K
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons84090

Mooij,  J
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Schölkopf, B., Janzing, D., Peters, J., Sgouritsa, E., Zhang, K., & Mooij, J. (2012). On Causal and Anticausal Learning. In J. Langford, & J. Pineau (Eds.), Proceedings of the 29th International Conference on Machine Learning (ICML 2012) (pp. 1255-1262). New York, NY, USA: Omnipress.


Cite as: http://hdl.handle.net/11858/00-001M-0000-000E-FE35-5
Abstract
There is no abstract available