Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The space-time CESE method for solving special relativistic hydrodynamic equations

MPG-Autoren
/persons/resource/persons86438

Qamar,  Shamsul
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
COMSATS Institute of Information Technology, Dep. of Mathematics, Islamabad, Pakistan;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Qamar, S., & Yousaf, M. (2012). The space-time CESE method for solving special relativistic hydrodynamic equations. Journal of Computational Physics, 231(10), 3928-3945. doi:10.1016/j.jcp.2012.01.039.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-8A04-D
Zusammenfassung
The special relativistic hydrodynamic equations are more complicated than the classical ones due to the nonlinear and implicit relations that exist between conservative and primitive variables. In this article, a space–time conservation element and solution element (CESE) method is proposed for solving these equations in one and two space dimensions. The CESE method has capability to capture sharp propagating wavefront of the relativistic fluids without excessive numerical diffusion or spurious oscillations. In contrast to the existing upwind finite volume schemes, the Riemann solver and reconstruction procedure are not the building blocks of the suggested method. The method differs from previous techniques because of global and local flux conservation in a space–time domain without resorting to interpolation or extrapolation. The scheme is efficient, robust, and gives results comparable to those obtained with more sophisticated algorithms, even in highly relativistic two-dimensional test problems. Copyright © 2012 Elsevier Inc. All rights reserved. [accessed June 12th 2012]