English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A hybrid process for chiral separation of compound-forming systems

MPS-Authors
/persons/resource/persons86307

Gou,  L.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

/persons/resource/persons86390

Lorenz,  H.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

/persons/resource/persons86477

Seidel-Morgenstern,  A.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Gou, L., Robl, S., Leonhard, K., Lorenz, H., Sordo, M., Butka, A., et al. (2011). A hybrid process for chiral separation of compound-forming systems. Chirality, 23(2), 118-127. doi:10.1002/chir.20886.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-8CD7-3
Abstract
The resolution of chiral compound-forming systems using hybrid processes was discussed recently. The concept is of large relevance as these systems form the majority of chiral substances. In this study, a novel hybrid process is presented, which combines pertraction and subsequent preferential crystallization and is applicable for the resolution of such systems. A supported liquid membrane applied in a pertraction process provides enantiomeric enrichment. This membrane contains a solution of a chiral compound acting as a selective carrier for one of the enantiomers. Screening of a large number of liquid membranes and potential carriers using the conductor-like screening model for realistic solvation method led to the identification of several promising carriers, which were tested experimentally in several pertraction runs aiming to yield enriched (+)-(S)-mandelic acid (MA) solutions from racemic feed solutions. The most promising system consisted of tetrahydronaphthalene as liquid membrane and hydroquinine-4-methyl-2-quinolylether (HMQ) as chiral carrier achieving enantiomeric excesses of 15% in average. The successful production of (+)-(S)-MA with a purity above 96% from enriched solutions by subsequent preferential crystallization proved the applicability of the hybrid process. copyright 2010 Wiley-Liss, Inc. [accessed November 18th, 2010]