English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Optimization of simulated moving bed chromatography with fractionation and feedback: Part II. Fractionation of both outlets

MPS-Authors
/persons/resource/persons86199

Li,  S.
Systems and Control Theory, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

/persons/resource/persons86212

Raisch,  J.
Systems and Control Theory, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
TU Berlin;

/persons/resource/persons86477

Seidel-Morgenstern,  A.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Li, S., Kawajiri, Y., Raisch, J., & Seidel-Morgenstern, A. (2010). Optimization of simulated moving bed chromatography with fractionation and feedback: Part II. Fractionation of both outlets. Journal of Chromatography A, 1217(33), 5349-5357. doi:10.1016/j.chroma.2010.06.032.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-909F-F
Abstract
A new improvement based on outlet fractionation and feedback has been developed for simulated moving bed (SMB) chromatography. In this contribution, this fractionation and feedback SMB (FF-SMB) concept is extended to the general scenario which integrates a simultaneous fractionation of both outlet streams. A model-based optimization approach, previously adopted to investigate single fractionation, is extended to consider this flexible fractionation policy. Quantitative optimization studies based on a specific separation problem reveal that the double fractionation is the most efficient operating scheme in terms of maximum feed throughput, while the two existing single fractionation modes discussed in our previous study are also significantly superior to the conventional SMB operation. The advantages of the double fractionation extension are further demonstrated in terms of several more detailed performance criteria. In order to evaluate the applicability of the fractionation and feedback modification, the effect of product purity, adsorption selectivity, column efficiency and column number on the relative potential of FF-SMB over SMB is examined. © 2010 Elsevier B.V. All rights reserved. [accessed September 20th, 2010]