Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Thermal effects in reactive liquid chromatography

MPG-Autoren
/persons/resource/persons86349

Kaspereit,  M.
Process Synthesis and Process Dynamics, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

/persons/resource/persons86359

Kienle,  A.       
Process Synthesis and Process Dynamics, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

/persons/resource/persons86477

Seidel-Morgenstern,  A.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Sainio, T., Kaspereit, M., Kienle, A., & Seidel-Morgenstern, A. (2007). Thermal effects in reactive liquid chromatography. Chemical Engineering Science, 62(18-20), 5674-5681. doi:10.1016/j.ces.2007.02.033.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-98C2-1
Zusammenfassung
Thermal effects in unsteady-state liquid phase chromatographic reactors were investigated experimentally in a thermally insulated column. In the case of an exothermic esterification reaction catalyzed by an acidic ionexchange resin, a self-amplifying positive thermal wave was found to develop in the reactor. This improved the reactor performance considerably when compared to isothermal conditions. The heat of reaction, enthalpy of adsorption, and heat of mixing all contribute to the thermal behavior of the reactor. The complex dynamic behavior caused by non-isothermal operation was elucidated by means of numerical simulations. The solid phase to fluid phase heat capacity ratio was found to be an important parameter because it affects the magnitude and propagation velocities of the thermal waves. SciVerse® is a registered trademark of Elsevier Properties S.A., used under license. ScienceDirect® is a registered trademark of Elsevier B.V. [accessed February 8th 2013]