English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Theoretical investigation of the adsorption of a binary mixture in a chromatographic column using the nonlinear frequency response technique

MPS-Authors
/persons/resource/persons86334

Ilic,  M.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

/persons/resource/persons86477

Seidel-Morgenstern,  A.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

External Ressource
No external resources are shared
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Ilic, M., Petkovska, M., & Seidel-Morgenstern, A. (2007). Theoretical investigation of the adsorption of a binary mixture in a chromatographic column using the nonlinear frequency response technique. Adsorption, 13(5-6 - Special Issue: Fundamentals of Adsorption 9, Part II), 541-567. doi:10.1007/s10450-007-9035-3.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-992E-B
Abstract
The nonlinear frequency response of a chromatographic column for the adsorption of two dissolved components is analyzed using the concept of higher order frequency response functions (FRFs) which is based on the Volterra series and generalized Fourier transform. By applying this concept a nonlinear model of a system is replaced by an infinite series of the FRFs of the first, second, etc. order. The FRFs up to the third order are derived theoretically starting from the equilibrium-dispersive model, which is used for description of a chromatographic column, and applying the harmonic probing method. The functions that relate outlet concentration changes of each component to the corresponding inlet concentration changes are derived. At the inlet of a chromatographic column, it is considered: (a) the concentration change of one of the components keeping the concentration of the other component constant and (b) the concentration change of both components keeping their ratio constant. The FRFs are calculated numerically for different steady-state concentrations and relative mixture compositions. It has been found that, despite certain differences in initial conditions, the FRFs exhibit similar behavior. For higher frequencies, the amplitudes of the FRFs tend to zero and phases to −∞. In the low frequency range, which is of interest for investigation of equilibrium parameters, these functions have similar behavior, but tend to different asymptotic values. Correlations between coefficients of competitive adsorption isotherms, i.e. partial isotherm derivatives, and the derived FRFs are established. This theoretical result offers the potential to use the analysis of the nonlinear frequency response of a chromatographic column for estimation of competitive adsorption isotherms. © Springer, Part of Springer Science+Business Media [accessed February 8th 2013]