Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Experimental and modeling study of the O2-enrichment by perovskite fibers

MPG-Autoren
/persons/resource/persons86315

Hamel,  C.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

/persons/resource/persons86477

Seidel-Morgenstern,  A.
Physical and Chemical Foundations of Process Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hamel, C., Seidel-Morgenstern, A., Schiestel, T., Werth, S., Wang, H., Tablet, C., et al. (2006). Experimental and modeling study of the O2-enrichment by perovskite fibers. AIChE-Journal, 52(9), 3118-3125. doi:10.1002/aic.10934.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-9A09-6
Zusammenfassung
The production of O2-enriched air (OEA) using dense mixed conducting perovskite hollow fiber membranes was studied experimentally and theoretically. The fibers were prepared by phase inversion spinning followed by sintering. A mathematical model was developed based on the mass balances for the OEA side, the O2-depleted air side and the hollow fiber itself to simulate the O2-enrichment. Based on the experiments and the model, the mass transport in the mixed conducting material was quantified using Wagner's theory. Furthermore, 3-D plots of broad parameter fields were calculated to estimate optimal operation conditions for a maximum O2-enrichment. The results elucidate that a required O2 concentration in the OEA, and the production rate can be adjusted by controlling the operation parameters, such as temperature, air pressure differences and sweep air flow rates. The long term operation (800 h) indicates that the perovskite hollow fiber membranes offer a promising potential for the industrial OEA production. Copyright © 2006 American Institute of Chemical Engineers (AIChE) [accessed 2013 November 27th]