English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Equilibrium and Rate-Based Approaches to Liquid-Liquid Phase Splitting Calculations

MPS-Authors
/persons/resource/persons86492

Steyer,  Frank
Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

/persons/resource/persons86167

Flockerzi,  D.
Systems and Control Theory, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;

/persons/resource/persons86497

Sundmacher,  Kai
Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Steyer, F., Flockerzi, D., & Sundmacher, K. (2005). Equilibrium and Rate-Based Approaches to Liquid-Liquid Phase Splitting Calculations. Computers & Chemical Engineering, 30(2), 277-284. doi:10.1016/j.compchemeng.2005.09.005.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-9CF3-6
Abstract
Several approaches are presented that can be used to compute liquid-liquid phase splitting. These approaches are based on homotopy continuation methods or on nonequilibrium thermodynamics. It is shown that they exhibit quite different computational demands with respect to computation times and a suggestion is made as to which algorithm to use. For chemical systems with only a few components the computation times encountered on a normal PC in most cases are only a few milliseconds, in some cases even less -- suggesting the general use of such algorithms to assure that phase splitting is always detected when present. Copyright © 2013 Elsevier B.V. All rights reserved. [accessed 2013 August 15th]