Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Design, operation and analysis of a membrane reactor for electrochemical gas purification


Sundmacher,  K.
Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society;
Otto-von-Guericke-Universität Magdeburg, External Organizations;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Sundmacher, K., & Hoffmann, U. (1999). Design, operation and analysis of a membrane reactor for electrochemical gas purification. Chemical Engineering Science, 54(13-14), 2937-2945. doi:10.1016/S0009-2509(98)90332-3.

Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-A28B-C
The use of electrochemical membrane absorbers for the purification of waste gases is investigated. In this type of reactor a gas and a liquid phase are brought into contact in the pore structure of a solid gas-diffusion electrode. The gaseous reactant is absorbed and converted by electrochemical reduction or oxidation. A limiting current analysis shows that such membrane systeme can have a better mass transfer intensity than conventional packed-bad absorbers or fluidized bed absorbers. This is demonstrated experimentally for the electrochemical absorption of chlorine in hydrochloric acid. The combination of a cathodic chlorine reduction with an anodic hydrogen oxidation leads to the concept of a membrane absorber which operates as a chlorine/hydrogen fuel cell. The chlorine conversion, the overcall current efficiency, and the fuel cell voltage were measured in dependence of the applied cell current. The importance of crossover phenomena of hydrogen and chlorine in the electrolyte gap is discussed.