English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Bilateral Teleoperation of Groups of Mobile Robots with Time-Varying Topology

MPS-Authors
/persons/resource/persons83915

Franchi,  A
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84227

Son,  HI
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84174

Robuffo Giordano,  P
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Franchi, A., Secchi, C., Son, H., Bülthoff, H., & Robuffo Giordano, P. (2012). Bilateral Teleoperation of Groups of Mobile Robots with Time-Varying Topology. IEEE Transaction on Robotics, 28(5), 1019-1033. doi:10.1109/TRO.2012.2196304.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-B5A6-A
Abstract
In this paper, a novel decentralized control strategy for bilaterally teleoperating heterogeneous groups of mobile robots from different domains (aerial, ground, marine, and underwater) is proposed. By using a decentralized control architecture, the group of robots, which is treated as the slave side, is made able to navigate in a cluttered environment while avoiding obstacles, interrobot collisions, and following the human motion commands. Simultaneously, the human operator acting on the master side is provided with a suitable force feedback informative of the group response and of the interaction with the surrounding environment. Using passivity-based techniques, we allow the behavior of the group to be as flexible as possible with arbitrary split and join events (e.g., due to interrobot visibility/packet losses or specific task requirements) while guaranteeing the stability of the system. We provide a rigorous analysis of the system stability and steady-state characteristics and validate performance through human/hardware-in-the-loop simulations by considering a heterogeneous fleet of unmanned aerial vehicles (UAVs) and unmanned ground vehicles as a case study. Finally, we also provide an experimental validation with four quadrotor UAVs.