English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Haptic Categorical Perception of Shape

MPS-Authors
/persons/resource/persons83925

Gaissert,  N
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84302

Waterkamp,  S
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83913

Fleming,  RW
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83840

Bülthoff,  I
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Gaissert, N., Waterkamp, S., Fleming, R., & Bülthoff, I. (2012). Haptic Categorical Perception of Shape. PLoS One, 7(8), 1-7. doi:10.1371/journal.pone.0043062.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-B676-E
Abstract
Categorization and categorical perception have been extensively studied, mainly in vision and audition. In the haptic domain, our ability to categorize objects has also been demonstrated in earlier studies. Here we show for the first time that categorical perception also occurs in haptic shape perception. We generated a continuum of complex shapes by morphing between two volumetric objects. Using similarity ratings and multidimensional scaling we ensured that participants could haptically discriminate all objects equally. Next, we performed classification and discrimination tasks. After a short training with the two shape categories, both tasks revealed categorical perception effects. Training leads to between-category expansion resulting in higher discriminability of physical differences between pairs of stimuli straddling the category boundary. Thus, even brief training can alter haptic representations of shape. This suggests that the weights attached to various haptic shape features can be changed dynamically in response to top-down information about class membership.