English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Submodular Inference of Diffusion Networks from Multiple Trees

MPS-Authors
/persons/resource/persons75510

Gomez Rodriguez,  M
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons84193

Schölkopf,  B
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Gomez Rodriguez, M., & Schölkopf, B. (2012). Submodular Inference of Diffusion Networks from Multiple Trees. In J. Langford, & J. Pineau (Eds.), 29th International Conference on Machine Learning (ICML 2012) (pp. 489-496). Madison, WI, USA: International Machine Learning Society.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-B6CE-A
Abstract
Diffusion and propagation of information, influence and diseases take place over increasingly larger networks. We observe when a node copies information, makes a decision or becomes infected but networks are often hidden or unobserved. Since networks are highly dynamic, changing and growing rapidly, we only observe a relatively small set of cascades before a network changes significantly. Scalable network inference based on a small cascade set is then necessary for understanding the rapidly evolving dynamics that govern diffusion. In this article, we develop a scalable approximation algorithm with provable near-optimal performance based on submodular maximization which achieves a high accuracy in such scenario, solving an open problem first introduced by Gomez-Rodriguez et al. (2010). Experiments on synthetic and real diffusion data show that our algorithm in practice achieves an optimal trade-off between accuracy and running time.