English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Synthesis and in Vitro Evaluation of a Biotinylated Dextran-Derived Probe for Molecular Imaging

MPS-Authors
/persons/resource/persons84084

Mishra,  A
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83996

Joshi,  R
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83903

Engelmann,  J
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84063

Logothetis,  NK
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Locator
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Mishra, A., Joshi, R., Engelmann, J., & Logothetis, N. (2012). Synthesis and in Vitro Evaluation of a Biotinylated Dextran-Derived Probe for Molecular Imaging. ACS Chemical Neuroscience, 3(4), 268-273. doi:10.1021/cn200112v.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-B7DE-F
Abstract
Herein we report the design, synthesis, and in vitro evaluation of a gadolinium-containing biotinylated dextran-derived molecular imaging probe as a prospective neuroanatomical tracer by means of magnetic resonance imaging (MRI). The probe was effectively taken up by cultured differentiated murine neuroblastoma cells and significantly enhanced the contrast in T1- and T2-weighted MR images of labeled cells under physiological conditions. A significant longitudinal relaxation rate enhancement in the presence of avidin was observed allowing the verification of the results in the end of noninvasive longitudinal MRI connectivity studies by post-mortem histology. The in vitro results indicate that the probe has the potential to be used in vivo to identify the organization of global neuronal networks in the brain with MRI.