English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Dual-functional probes towards in vivo studies of brain connectivity and plasticity

MPS-Authors
/persons/resource/persons84074

Mamedov,  I
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83903

Engelmann,  J
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83895

Eschenko,  O
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83807

Beyerlein,  M
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84063

Logothetis,  NK
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Mamedov, I., Engelmann, J., Eschenko, O., Beyerlein, M., & Logothetis, N. (2012). Dual-functional probes towards in vivo studies of brain connectivity and plasticity. Chemical Communications, 48(22), 2755-2757. doi:10.1039/C1CC15991G.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-B81C-C
Abstract
A Gd3+ based paramagnetic dextran conjugate has been developed, which enables the tracking of neuroanatomical connectivity in the brain by both MR and optical imaging. Cell studies and subsequent in vivo experiments in rodents demonstrate efficient internalisation and transport properties of the new tracer molecule.