English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Hepatocellular apoptosis in mice is associated with early upregulation of mitochondrial glucose metabolism

MPS-Authors
/persons/resource/persons83941

Gottschalk,  S
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Gottschalk, S., Zwingmann, C., Raymond, V.-A., Hohnholt, M., Chan, T., & Bilodeau, M. (2012). Hepatocellular apoptosis in mice is associated with early upregulation of mitochondrial glucose metabolism. Apoptosis, 17(2), 143-153. doi:10.1007/s10495-011-0669-y.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-B822-9
Abstract
Hepatocyte death due to apoptosis is a hallmark of almost every liver disease. Manipulation of cell death regulatory steps during the apoptotic process is therefore an obvious goal of biomedical research. To clarify whether metabolic changes occur prior to the characteristic apoptotic events, we used ex vivo multinuclear NMR-spectroscopy to study metabolic pathways of [U-13C]glucose in mouse liver during Fas-induced apoptosis. We addressed whether these changes could be associated with protection against apoptosis afforded by Epidermal Growth Factor (EGF). Our results show that serum alanine and aspartate aminotransferase levels, caspase-3 activity, BID cleavage and changes in cellular energy stores were not observed before 3 h following anti-Fas injection. However, as early as 45 min after anti-Fas treatment, we observed upregulation of carbon entry (i.e. flux) from glucose into the Krebs-cycle via pyruvate dehydrogenase (PDH) and pyruvate carboxylase (PC) (up to 139 and 123 of controls, respectively, P < 0.001). This was associated with increased glutathione synthesis. EGF treatment significantly attenuated Fas-induced apoptosis, liver injury and the late decrease in energy stores, as well as the early fluxes through PDH and PC which were comparable to untreated controls. Using ex vivo multinuclear NMR-spectroscopic analysis, we have shown that Fas receptor activation in mouse liver time-dependently affects specific metabolic pathways of glucose. These early upregulations in glucose metabolic pathways occur prior to any visible signs of apoptosis and may have the potential to contribute to the initiation of apoptosis by maintaining mitochondrial energy production and cellular glutathione stores.