Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Optically transmitted and inductively coupled electric reference to access in vivo concentrations for quantitative proton-decoupled 13C magnetic resonance spectroscopy

MPG-Autoren
/persons/resource/persons84402

Henning,  A
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Chen, X., Pavan M, Heinzer-Schweizer S, Boesiger, P., & Henning, A. (2012). Optically transmitted and inductively coupled electric reference to access in vivo concentrations for quantitative proton-decoupled 13C magnetic resonance spectroscopy. Magnetic Resonance in Medicine, 67(1), 1–7. doi:10.1002/mrm.23110.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-B864-6
Zusammenfassung
This report describes our efforts on quantification of tissue metabolite concentrations in mM by nuclear Overhauser enhanced and proton decoupled 13C magnetic resonance spectroscopy and the Electric Reference To access In vivo Concentrations (ERETIC) method. Previous work showed that a calibrated synthetic magnetic resonance spectroscopy-like signal transmitted through an optical fiber and inductively coupled into a transmit/receive coil represents a reliable reference standard for in vivo 1H magnetic resonance spectroscopy quantification on a clinical platform. In this work, we introduce a related implementation that enables simultaneous proton decoupling and ERETIC-based metabolite quantification and hence extends the applicability of the ERETIC method to nuclear Overhauser enhanced and proton decoupled in vivo 13C magnetic resonance spectroscopy. In addition, ERETIC signal stability under the influence of simultaneous proton decoupling is investigated. The proposed quantification method was cross-validated against internal and external reference standards on human skeletal muscle. The ERETIC signal intensity stability was 100.65 ± 4.18 over 3 months including measurements with and without proton decoupling. Glycogen and unsaturated fatty acid concentrations measured with the ERETIC method were in excellent agreement with internal creatine and external phantom reference methods, showing a difference of 1.85 ± 1.21 for glycogen and 1.84 ± 1.00 for unsaturated fatty acid between ERETIC and creatine-based quantification, whereas the deviations between external reference and creatine-based quantification are 6.95 ± 9.52 and 3.19 ± 2.60, respectively.