English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Talk

Passivity-based Decentralized Bilateral Teleoperation of Groups of Mobile Robots with Fixed and Time-Varying Topology

MPS-Authors
/persons/resource/persons83915

Franchi,  A
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Franchi, A. (2011). Passivity-based Decentralized Bilateral Teleoperation of Groups of Mobile Robots with Fixed and Time-Varying Topology. Talk presented at Center for Control, Dynamical-Systems, and Computation (CCDC), University of California. Santa Barbara, CA, USA.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-B96E-6
Abstract
This talk will present some recent theoretical and experimental results in the relatively new topic of Bilateral Teleoperation of Multiple Mobile Robots, with special regard to the Unmanned Aerial Vehicle (UAV) case. In this non-conventional teleoperation field a human operator partially controls the behavior of a semi-autonomous swarm of mobile-robots by means of one or more haptic interfaces, and receives back a force cue which is informative both of the swarm tracking performance and of some relevant properties of the surrounding environment (e.g., presence of obstacles or other threats). This kind of systems are designed in order to enhance the telepresence of the operator and the quality of the human robot interaction, especially when applied to practical scenarios, like search and rescue, surveillance, exploration and mapping. The focus of the talk will be on the design of a stable bilateral interconnection between the user and the group of robots considered either (1) as a deformable object with a given shape (fixed topology) to be achieved with suitable formation control algorithms, or (2) a swarm of agents with time-varying topology which dynamically adapts to the environment while preserving the global connectivity and selects the best leader in a decentralized way.