English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Image Retrieval with Semantic Sketches

MPS-Authors
/persons/resource/persons83902

Engel,  D
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Project group: Cognitive Engineering, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83965

Herdtweck,  C
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Project group: Cognitive Engineering, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83834

Browatzki,  B
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83871

Curio,  C
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Project group: Cognitive Engineering, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Engel, D., Herdtweck, C., Browatzki, B., & Curio, C. (2011). Image Retrieval with Semantic Sketches. In P. Campos, N. Graham, J. Jorge, N. Nunes, P. Palanque, & M. Winckler (Eds.), Human-Computer Interaction: INTERACT 2011 (pp. 412-425). Berlin, Germany: Springer.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-BA4A-E
Abstract
With increasingly large image databases, searching in them becomes an ever more difficult endeavor. Consequently, there is a need for advanced tools for image retrieval in a webscale context. Searching by tags becomes intractable in such scenarios as large numbers of images will correspond to queries such as “car and house and street”. We present a novel approach that allows a user to search for images based on semantic sketches that describe the desired composition of the image. Our system operates on images with labels for a few high-level object categories, allowing us to search very fast with a minimal memory footprint. We employ a structure similar to random decision forests which avails a data-driven partitioning of the image space providing a search in logarithmic time with respect to the number of images. This makes our system applicable for large scale image search problems. We performed a user study that demonstrates the validity and usability of our approach.