English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Learning inverse kinematics with structured prediction

MPS-Authors
/persons/resource/persons83817

Bocsi,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84108

Nguyen-Tuong,  D
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83869

Csato,  L
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Dept. Empirical Inference, Max Planck Institute for Intelligent System, Max Planck Society;

/persons/resource/persons84193

Schölkopf,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84135

Peters,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Bocsi, B., Nguyen-Tuong, D., Csato, L., Schölkopf, B., & Peters, J. (2011). Learning inverse kinematics with structured prediction. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2011) (pp. 698-703). Piscataway, NJ, USA: IEEE.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-BA52-B
Abstract
Learning inverse kinematics of robots with redundant degrees of freedom (DoF) is a difficult problem in robot learning. The difficulty lies in the non-uniqueness of the inverse kinematics function. Existing methods tackle non-uniqueness by segmenting the configuration space and building a global solution from local experts. The usage of local experts implies the definition of an oracle, which governs the global consistency of the local models; the definition of this oracle is difficult. We propose an algorithm suitable to learn the inverse kinematics function in a single global model despite its multivalued nature. Inverse kinematics is approximated from examples using structured output learning methods. Unlike most of the existing methods, which estimate inverse kinematics on velocity level, we address the learning of the direct function on position level. This problem is a significantly harder. To support the proposed method, we conducted real world experiments on a tracking control task and tested our algorithms on these models.