English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Meeting Abstract

Welcome to wonderland: The apparent size of the self-avatar hands and arms influences perceived size and shape in virtual environments

MPS-Authors
/persons/resource/persons84060

Linkenauger,  S
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84088

Mohler,  BJ
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Linkenauger, S., Mohler, B., & Bülthoff, H. (2011). Welcome to wonderland: The apparent size of the self-avatar hands and arms influences perceived size and shape in virtual environments. Perception, 40(ECVP Abstract Supplement), 46.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-BAAC-3
Abstract
Welcome to wonderland: The apparent size of the self-avatar hands and arms influences perceived size and shape in virtual environments S A Linkenauger, B J Mohler, H H Bülthoff According to the functional approach to the perception of spatial layout, angular optic variables that indicate extents are scaled to the body and its action capabilities [cf Proffitt, 2006 Perspectives on Psychological Science 1(2) 110–122]. For example, reachable extents are perceived as a proportion of the maximum extent to which one can reach, and the apparent sizes of graspable objects are perceived as a proportion of the maximum extent that one can grasp (Linkenauger et al, 2009 Journal of Experimental Psychology: Human Perceptiion and Performance; 2010 Psychological Science). Therefore, apparent sizes and distances should be influenced by changing scaling aspects of the body. To test this notion, we immersed participants into a full cue virtual environment. Participants’ head, arm and hand movements were tracked and mapped onto a first-person, self-representing avatar in real time. We manipulated the participants’ visual information about their body by changing aspects of the self-avatar (hand size and arm length). Perceptual verbal and action judgments of the sizes and shapes of virtual objects’ (spheres and cubes) varied as a function of the hand/arm scaling factor. These findings provide support for a body-based approach to perception and highlight the impact of self-avatars’ bodily dimensions for users’ perceptions of space in virtual environments.