日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Influence of Calcium-Induced Aggregation on the Sensitivity of Aminobis(methylenephosphonate)-Containing Potential MRI Contrast Agents

MPS-Authors
/persons/resource/persons84074

Mamedov,  I
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84063

Fousková P, Toth E, Logothetis,  NK
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83784

Angelovski,  G
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Henig, J., Mamedov, I., Fousková P, Toth E, Logothetis, N., Angelovski, G., & Meyer, H. (2011). Influence of Calcium-Induced Aggregation on the Sensitivity of Aminobis(methylenephosphonate)-Containing Potential MRI Contrast Agents. Inorganic Chemistry, 50(14), 6472–6481. doi:10.1021/ic1024235.


引用: https://hdl.handle.net/11858/00-001M-0000-0013-BB02-6
要旨
A novel class of 1,4,7,10-tetraazacyclododecane-1,4,7-tris(methylenecarboxylic) acid (DO3A)-based lanthanide complexes with relaxometric response to Ca2+ was synthesized, and their physicochemical properties were investigated. Four macrocyclic ligands containing an alkyl-aminobis(methylenephosphonate) side chain for Ca2+-chelation have been studied (alkyl is propyl, butyl, pentyl, and hexyl for L1, L2, L3, and L4, respectively). Upon addition of Ca2+, the r1 relaxivity of their Gd3+ complexes decreased up to 61 of the initial value for the best compounds GdL3 and GdL4. The relaxivity of the complexes was concentration dependent (it decreases with increasing concentration). Diffusion NMR studies on the Y3+ analogues evidenced the formation of agglomerates at higher concentrations; the aggregation becomes even more important in the presence of Ca2+. 31P NMR experiments on EuL1 and EuL4 indicated the coordination of a phosphonate to the Ln3+ for the ligand with a propyl chain, while phosphonate coordination was not observed for the analogue bearing a hexyl linker. Potentiometric titrations yielded protonation constants of the Gd3+ complexes. log KH1 values for all complexes lie between 6.12 and 7.11 whereas log KH2 values are between 4.61 and 5.87. Luminescence emission spectra recorded on the Eu3+ complexes confirmed the coordination of a phosphonate group to the Ln3+ center in EuL1. Luminescence lifetime measurements showed that Ca-induced agglomeration reduces the hydration number which is the main cause for the change in r1. Variable temperature 17O NMR experiments evidenced high water exchange rates on GdL1, GdL2, and GdL3 comparable to that of the aqua ion.