日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

会議論文

Towards Brain-Robot Interfaces in Stroke Rehabilitation

MPS-Authors
/persons/resource/persons75510

Gomez Rodriguez,  M
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83948

Grosse-Wentrup,  M
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83968

Hill,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84193

Gharabaghi A, Schölkopf,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84135

Peters,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Gomez Rodriguez, M., Grosse-Wentrup, M., Hill, J., Gharabaghi A, Schölkopf, B., & Peters, J. (2011). Towards Brain-Robot Interfaces in Stroke Rehabilitation. In 12th International Conference on Rehabilitation Robotics (ICORR 2011) (pp. 1-6). Piscataway, NJ, USA: IEEE.


引用: https://hdl.handle.net/11858/00-001M-0000-0013-BB34-7
要旨
A neurorehabilitation approach that combines robot-assisted active physical therapy and Brain-Computer Interfaces (BCIs) may provide an additional mileage with respect to traditional rehabilitation methods for patients with severe motor impairment due to cerebrovascular brain damage (e.g., stroke) and other neurological conditions. In this paper, we describe the design and modes of operation of a robot-based rehabilitation framework that enables artificial support of the sensorimotor feedback loop. The aim is to increase cortical plasticity by means of Hebbian-type learning rules. A BCI-based shared-control strategy is used to drive a Barret WAM 7-degree-of-freedom arm that guides a subject's arm. Experimental validation of our setup is carried out both with healthy subjects and stroke patients. We review the empirical results which we have obtained to date, and argue that they support the feasibility of future rehabilitative treatments employing this novel approach.