English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Finite RF pulse correction on DESPOT2

MPS-Authors
There are no MPG-Authors in the publication available
External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Crooijmans, H., Scheffler, K., & Bieri, O. (2011). Finite RF pulse correction on DESPOT2. Magnetic Resonance in Medicine, 65(3), 858-862. doi:10.1002/mrm.22661.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-BC5A-B
Abstract
Magnetization transfer and finite radiofrequency (RF) pulses affect the steady state of balanced steady state free precession. As quantification of transverse relaxation (T2) with driven equilibrium single pulse observation of T2 is based on two balanced steady state free precession acquisitions, both effects can influence the outcome of this method: a short RF pulse per repetition time (TRF/TR ≪ 1) leads to considerable magnetization transfer effects, whereas prolonged RF pulses (TRF/TR > 0.2) minimize magnetization transfer effects, but lead to increased finite pulse effects. A correction for finite pulse effects is thus implemented in the driven equilibrium single pulse observation of T2 theory to compensate for reduced transverse relaxation effects during excitation. It is shown that the correction successfully removes the driven equilibrium single pulse observation of T2 dependency on the RF pulse duration. A reduction of the variation in obtained T2 from over 50 to less than 10 is achieved. We hereby provide a means of acquiring magnetization transfer-free balanced steady state free precession images to yield accurate T2 values using elongated RF pulses.