English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Poster

Online 3D simulation of extracellular recordings with morphologically reconstructed neurons

MPS-Authors
/persons/resource/persons84098

Munk,  MH
Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Franke, F., Meier, P., Natora, M., Hagen, E., Pettersen, K., Linden, H., et al. (2010). Online 3D simulation of extracellular recordings with morphologically reconstructed neurons. Poster presented at Bernstein Conference on Computational Neuroscience (BCCN 2010), Berlin, Germany. doi:10.3389/conf.fncom.2010.51.00128.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-BE04-C
Abstract
Extracellular recordings are a key tool to study the activity of neurons in vivo. Especially in the case of experiments with behaving animals, however, the tedious procedure of electrode placement can take a considerable amount of expensive and restricted experimental time. Furthermore, due to tissue drifts and other sources of variability in the recording setup, the position of the electrodes with respect to the neurons under study can change, causing low recording quality. Here, we developed a system online simulation of extracellular recordings that allows for feedback from electrode positioning systems. The simulator is based on realistically reconstructed 3D neurons. The shape of the extracellular waveform is estimated from their morphology for every point on a 3D grid around the neurons. If a recording device is close to a neuron, the corresponding waveform for its spikes is calculated from that grid by interpolating the waveforms of the adjacent grid positions. This way we can simulate a realistic recording environment in which an unconstrained movement of electrodes and neurons and an interaction with a positioning system and online spike sorter is possible.