Help Privacy Policy Disclaimer
  Advanced SearchBrowse





Proteins: Single particle reconstruction based on 2d crystals


Ryll,  M
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Ryll, M. (2010). Proteins: Single particle reconstruction based on 2d crystals. Poster presented at 11th Conference of Junior Neuroscientists of Tübingen (NeNa 2010), Heiligkreuztal, Germany.

Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-BE0A-F
Structural biology is a new branch of basic research and avails oneself of knowledge from many other sciences like molecular biology, chemistry, biophysics and computer science. The goal of structural biology is a better understanding of biological processes at atomic resolution. To reconstruct proteins three different techniques do exist: X-ray crystallography, PNRM and single particle refinement. At the Karolinska Institute we developed a new method basing on single particle refinement combined with the knowledge we gain from the symmetric order of a crystal. Therefore we developed and implemented two new process steps for the well known reconstruction software EMAN2. The first process step improves the boxing tool - the cutting of single protein unit cells from the TEM image. The second step improves the refinement by decreasing the number of possible Eularian angles. To proof our results we tested the new software package on the sugar symporter MelB. The best resolution of MelB gained by single particle is 8Å [Purhonen: Three-dimensional structure of the suger syporter. Journal of Structural Biology, 152:76-83, 2005]. Based on the first experiments and testings it seems that a resolution better than 6Å can be achieved with the same number of iterations and the same image set as used in the 8Å-refinement. The refinement process according to the less number of alignments is much faster now. About 40 of less time is necessary.