日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

会議論文

Gaussian Mixture Modeling with Gaussian Process Latent Variable Models

MPS-Authors
/persons/resource/persons84109

Nickisch,  H
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84156

Rasmussen,  CE
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Nickisch, H., & Rasmussen, C. (2010). Gaussian Mixture Modeling with Gaussian Process Latent Variable Models. In M., Goesele, S., Roth, A., Kuijper, B., Schiele, & K., Schindler (Eds.), DAGM 2010: Pattern Recognition (pp. 271-282). Berlin, Germany: Springer.


引用: https://hdl.handle.net/11858/00-001M-0000-0013-BE68-A
要旨
Density modeling is notoriously difficult for high dimensional data. One approach to the problem is to search for a lower dimensional manifold which captures the main characteristics of the data. Recently, the Gaussian Process Latent Variable Model (GPLVM) has successfully been used to find low dimensional manifolds in a variety of complex data. The GPLVM consists of a set of points in a low dimensional latent space, and a stochastic map to the observed space. We show how it can be interpreted as a density model in the observed space. However, the GPLVM is not trained as a density model and therefore yields bad density estimates. We propose a new training strategy and obtain improved generalisation performance and better density estimates in comparative evaluations on several benchmark data sets.