Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

A scalable trust-region algorithm with application to mixed-norm regression

MPG-Autoren
/persons/resource/persons76142

Sra,  S
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

ICML2010-Kim_6519[0].pdf
(beliebiger Volltext), 333KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kim, D., Sra, S., & Dhillon, I. (2010). A scalable trust-region algorithm with application to mixed-norm regression. In J. Fürnkranz, & T. Joachims (Eds.), 27th International Conference on Machine Learning (ICML 2010) (pp. 519-526). Madison, WI, USA: Omnipress.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-BF94-D
Zusammenfassung
We present a new algorithm for minimizing a convex loss-function subject to regularization. Our framework applies to numerous problems in machine learning and statistics; notably, for sparsity-promoting regularizers such as ℓ1 or ℓ1, ∞ norms, it enables efficient computation of sparse solutions. Our approach is based on the trust-region framework with nonsmooth objectives, which allows us to build on known results to provide convergence analysis. We avoid the computational overheads associated with the conventional Hessian approximation used by trust-region methods by instead using a simple separable quadratic approximation. This approximation also enables use of proximity operators for tackling nonsmooth regularizers. We illustrate the versatility of our resulting algorithm by specializing it to three mixed-norm regression problems: group lasso [36], group logistic regression [21], and multi-task lasso [19]. We experiment with both synthetic and real-world large-scale data—our method is seen to be competitive, robust, and scalable.