Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Causal Markov condition for submodular information measures

MPG-Autoren
/persons/resource/persons75626

Janzing,  D
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84193

Schölkopf,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

COLT2010-Steudel_[0].pdf
(beliebiger Volltext), 142KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Steudel, B., Janzing, D., & Schölkopf, B. (2010). Causal Markov condition for submodular information measures. In A. Tauman Kalai, & M. Mohri (Eds.), 23rd Annual Conference on Learning Theory (COLT 2010) (pp. 464-476). Madison, WI, USA: OmniPress.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0013-BF98-5
Zusammenfassung
The causal Markov condition (CMC) is a postulate that links observations to causality. It describes the conditional independences among the observations that are entailed by a causal hypothesis in terms of a directed acyclic graph. In the conventional setting, the observations are random variables and the independence is a statistical one, i.e., the information content of observations is measured in
terms of Shannon entropy. We formulate a generalized CMC for any kind of observations on which independence is defined via an arbitrary submodular information measure. Recently, this has been discussed for observations in terms of binary strings where information is understood in the sense of Kolmogorov complexity. Our approach enables us to find computable alternatives to Kolmogorov complexity, e.g., the length of a text after applying existing data compression schemes. We show that our CMC is justified if one restricts the attention to a class of causal mechanisms that is adapted to the respective information measure. Our justification is similar to deriving the statistical CMC
from functional models of causality, where every variable is a deterministic function of its observed causes and an unobserved noise term. Our experiments on real data demonstrate the performance of compression based causal inference.