English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Report

Gaussian Mixture Modeling with Gaussian Process Latent Variable Models

MPS-Authors
/persons/resource/persons84109

Nickisch,  H
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Nickisch, H., & Rasmussen, C.(2010). Gaussian Mixture Modeling with Gaussian Process Latent Variable Models. Tübingen, Germany: Max Planck Institute for Biological Cybernetics.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-BFAA-E
Abstract
Density modeling is notoriously difficult for high dimensional data. One approach to the problem is to search for a lower dimensional manifold which captures the main characteristics of the data. Recently, the Gaussian Process Latent Variable Model (GPLVM) has successfully been used to find low dimensional manifolds in a variety of complex data. The GPLVM consists of a set of points in a low dimensional latent space, and a stochastic map to the observed space. We show how it can be interpreted as a density model in the observed space. However, the GPLVM is not trained as a density model and therefore yields bad density estimates. We propose a new training strategy and obtain improved generalisation performance and better density estimates in comparative evaluations on several benchmark data sets.