# Item

ITEM ACTIONSEXPORT

Released

Conference Paper

#### A conversion between utility and information

##### MPS-Authors

There are no MPG-Authors in the publication available

##### External Resource

https://arxiv.org/pdf/0911.5106.pdf

(Any fulltext)

##### Fulltext (restricted access)

There are currently no full texts shared for your IP range.

##### Fulltext (public)

There are no public fulltexts stored in PuRe

##### Supplementary Material (public)

There is no public supplementary material available

##### Citation

Ortega, P., & Braun, D. (2010). A conversion between utility and information. In
E. Hutter, & M. Kitzelmann (*Third Conference on
Artificial General Intelligence (AGI 2010)* (pp. 115-120). Amsterdam, Netherlands: Atlantis Press.

Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-C104-6

##### Abstract

Rewards typically express desirabilities or preferences over a set of alternatives. Here we propose that rewards can be defined for any probability distribution based on three desiderata, namely that rewards should be real-valued, additive and order-preserving, where the latter implies that more probable events should also be more desirable. Our main result states that rewards are then uniquely determined by the negative information content. To analyze stochastic processes, we define the utility of a realization as its reward rate. Under this interpretation, we show that the expected utility of a stochastic process is its negative entropy rate. Furthermore, we apply our results to analyze agent-environment interactions. We show that the expected utility that will actually be achieved by the agent is given by the negative cross-entropy from the input-output (I/O) distribution of the coupled interaction system and the agent's I/O distribution. Thus, our results allow for an information-theoretic interpretation of the notion of utility and the characterization of agent-environment interactions in terms of entropy dynamics.