English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Multidimensional scaling analysis of haptic exploratory procedures

MPS-Authors
/persons/resource/persons83865

Cooke,  T
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84298

Wallraven,  C
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Cooke, T., Wallraven, C., & Bülthoff, H. (2010). Multidimensional scaling analysis of haptic exploratory procedures. ACM Transactions on Applied Perception, 7(1): 7, pp. 1-17. doi:10.1145/1658349.1658356.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-C16C-F
Abstract
Previous work in real and virtual settings has shown that the way in which we interact with objects plays a fundamental role in the way we perceive them. This article uses multidimensional scaling (MDS) analysis to further characterize and quantify the effects of using different haptic exploratory procedures (EPs) on perceptual similarity spaces. In Experiment 1, 20 participants rated similarity on a set of nine novel, 3D objects varying in shape and texture after either following their contours, laterally rubbing their centers, gripping them, or sequentially touching their tips. MDS analysis was used to recover perceptual maps of the objects and relative weights of perceptual dimensions from similarity data. Both the maps and relative weights of shape/texture properties were found to vary as a function of the EP used. In addition, large individual differences in the relative weight of shape/texture were observed. In Experiment 2, 17 of the previous participants repeated Experiment 1 after an average of 105 d
ays. The same patterns of raw similarity ratings, perceptual maps, dimension weights, and individual differences were observed, indicating that perceptual similarities remained stable over time. The findings underscore the role of hand movements and individual biases in shaping haptic perceptual similarity. A framework for validating multimodal virtual displays based on the approach used in the study is also presented.