English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Talk

Machine Learning for Brain-Computer Interfaces

MPS-Authors
/persons/resource/persons83968

Hill,  NJ
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Ressource
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available
Citation

Hill, N. (2009). Machine Learning for Brain-Computer Interfaces. Talk presented at Mini-Symposia on Assistive Machine Learning for People with Disabilities at NIPS 2009 (AMD 2009). Vancouver, BC, Canada. 2009-12-10.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-C1B0-4
Abstract
Brain-computer interfaces (BCI) aim to be the ultimate in assistive technology: decoding a userlsquo;s intentions directly from brain signals without involving any muscles or peripheral nerves. Thus, some classes of BCI potentially offer hope for users with even the most extreme cases of paralysis, such as in late-stage Amyotrophic Lateral Sclerosis, where nothing else currently allows communication of any kind. Other lines in BCI research aim to restore lost motor function in as natural a way as possible, reconnecting and in some cases re-training motor-cortical areas to control prosthetic, or previously paretic, limbs. Research and development are progressing on both invasive and non-invasive fronts, although BCI has yet to make a breakthrough to widespread clinical application. The high-noise high-dimensional nature of brain-signals, particularly in non-invasive approaches and in patient populations, make robust decoding techniques a necessity. Generally, the approach has been to use relatively simple feature extraction techniques, such as template matching and band-power estimation, coupled to simple linear classifiers. This has led to a prevailing view among applied BCI researchers that (sophisticated) machine-learning is irrelevant since "it doesnlsquo;t matter what classifier you use once youlsquo;ve done your preprocessing right and extracted the right features." I shall show a few examples of how this runs counter to both the empirical reality and the spirit of what needs to be done to bring BCI into clinical application. Along the way Ilsquo;ll highlight some of the interesting problems that remain open for machine-learners.