Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Journal Article

Does Cognitive Science Need Kernels?


Schölkopf,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Jäkel, F., Schölkopf, B., & Wichmann, F. (2009). Does Cognitive Science Need Kernels? Trends in Cognitive Sciences, 13(9), 381-388. doi:10.1016/j.tics.2009.06.002.

Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-C2E0-E
Kernel methods are among the most successful tools in machine learning and are used in challenging data analysis problems in many disciplines. Here we provide examples where kernel methods have proven to be powerful tools for analyzing behavioral data, especially for identifying features in categorization experiments. We also demonstrate that kernel methods relate to perceptrons and exemplar models of categorization. Hence, we argue that kernel methods have neural and psychological plausibility, and theoretical results concerning their behavior are therefore potentially relevant for human category learning. In particular, we believe kernel methods have the potential to provide explanations ranging from the implementational via the algorithmic to the computational level.