日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

会議論文

Object Localization with Global and Local Context Kernels

MPS-Authors
/persons/resource/persons84037

Lampert,  CH
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Blaschko, M., & Lampert, C. (2009). Object Localization with Global and Local Context Kernels. In British Machine Vision Conference 2009 (BMVC 2009) (pp. 1-11). Durham, UK: BMVA Press. doi:10.5244/C.23.63.


引用: https://hdl.handle.net/11858/00-001M-0000-0013-C313-5
要旨
Recent research has shown that the use of contextual cues significantly improves performance in sliding window type localization systems. In this work, we propose a method
that incorporates both global and local context information through appropriately defined
kernel functions. In particular, we make use of a weighted combination of kernels defined
over local spatial regions, as well as a global context kernel. The relative importance of
the context contributions is learned automatically, and the resulting discriminant function
is of a form such that localization at test time can be solved efficiently using a branch
and bound optimization scheme. By specifying context directly with a kernel learning
approach, we achieve high localization accuracy with a simple and efficient representation.
This is in contrast to other systems that incorporate context for which expensive
inference needs to be done at test time. We show experimentally on the PASCAL VOC
datasets that the inclusion of context can significantly improve localization performance,
provided the relative contributions of context cues are learned appropriately.