日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Modeling Human Multimodal Perception and Control Using Genetic Maximum Likelihood Estimation

MPS-Authors
/persons/resource/persons84644

Pool,  DM
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Zaal, P., Pool, D., Chu QP, van Paassen MM, Mulder, M., & Mulder, J. (2009). Modeling Human Multimodal Perception and Control Using Genetic Maximum Likelihood Estimation. Journal of Guidance, Control, and Dynamics, 32(4), 1089-1099. doi:10.2514/1.42843.


引用: https://hdl.handle.net/11858/00-001M-0000-0013-C363-2
要旨
This paper presents a new method for estimating the parameters of multichannel pilot models that is based on maximum likelihood estimation. To cope with the inherent nonlinearity of this optimization problem, the gradientbased Gauss–Newton algorithm commonly used to optimize the likelihood function in terms of output error is complemented with a genetic algorithm. This significantly increases the probability of finding the global optimum of the optimization problem. The genetic maximum likelihood method is successfully applied to data from a recent human-in-the-loop experiment. Accurate estimates of the pilot model parameters and the remnant characteristics are obtained. Multiple simulations with increasing levels of pilot remnant are performed, using the set of parameters found from the experimental data, to investigate how the accuracy of the parameter estimate is affected by increasing remnant. It is shown that the bias in the parameter estimates is only substantial for very high levels of pilot remnant. Some adjustments to the maximum likelihood method are proposed to reduce this bias.