English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Poster

BOLD signal in intraparietal sulcus covaries with magnitude of implicitly driven attention shifts

MPS-Authors
/persons/resource/persons84201

Schultz,  J
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84048

Lennert,  T
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Schultz, J., & Lennert, T. (2009). BOLD signal in intraparietal sulcus covaries with magnitude of implicitly driven attention shifts. Poster presented at 32nd European Conference on Visual Perception (ECVP 2009), Regensburg, Germany.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-C393-3
Abstract
A lot is known about the neural basis of directing attention based on explicit cues. In real life however, attention shifts are rarely directed by explicit cues but rather generated implicitly, for example on the basis of previous experience. Here, we aimed at studying attention shifts dependent on recent trial history. We asked observers to detect targets in a stream of visual stimuli with three feature dimensions: colour, shape and motion. Critically, target occurrence probability was always higher in one stimulus dimension than in the others, and probabilities switched between dimensions over blocks of trials. After each probability switch, target detection times decreased exponentially for high-probability targets and increased for low-probability targets, compatible with gradual shifts in attention dependent on trial history since the switch. BOLD signal in left prefrontal and intraparietal sulcus regions was higher in the early phase after the switch, while anterior cingulate, cuneus, precuneus, temporal and more anterior frontal regions showed more activation later after the switch. These findings are compatible with expectation about engagement of regions involved in the establishment and maintenance of attentional sets. BOLD signal in left intraparietal sulcus correlated with the size of the performance changes consecutive to the detected targets, suggesting that it reflects the size of attention shifts induced by updating target probabilities over recent trial history.