English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Learning the Similarity Measure for Multi-Modal 3D Image Registration

MPS-Authors
/persons/resource/persons84040

Lee,  D
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83974

Hofmann,  M
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84235

Steinke,  F
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83782

Altun,  Y
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84193

Schölkopf,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Lee, D., Hofmann, M., Steinke, F., Altun, Y., Cahill, N., & Schölkopf, B. (2009). Learning the Similarity Measure for Multi-Modal 3D Image Registration. In 2009 IEEE Conference on Computer Vision and Pattern Recognition (pp. 186-193). Piscataway, NJ, USA: IEEE Service Center.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-C48D-B
Abstract
Multi-modal image registration is a challenging problem in medical imaging. The goal is to align anatomically identical structures; however, their appearance in images acquired with different imaging devices, such as CT or MR, may be very different. Registration algorithms generally deform one image, the floating image, such that it matches with a second, the reference image, by maximizing some similarity score between the deformed and the reference image. Instead of using a universal, but a priori fixed similarity criterion such as mutual information, we propose learning a similarity measure in a discriminative manner such that the reference and correctly deformed floating images receive high similarity scores. To this end, we develop an algorithm derived from max-margin structured output learning, and employ the learned similarity measure within a standard rigid registration algorithm. Compared to other approaches, our method adapts to the specific registration problem at hand and exploits correlations between neighboring pixels in the reference and the floating image. Empirical evaluation on CT-MR/PET-MR rigid registration tasks demonstrates that our approach yields robust performance and outperforms the state of the art methods for multi-modal medical image registration.