English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Local Gaussian Process Regression for Real Time Online Model Learning and Control

MPS-Authors
/persons/resource/persons84108

Nguyen-Tuong,  D
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84205

Seeger,  M
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84135

Peters,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Nguyen-Tuong, D., Seeger, M., & Peters, J. (2009). Local Gaussian Process Regression for Real Time Online Model Learning and Control. In D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.), Advances in neural information processing systems 21 (pp. 1193-1200). Red Hook, NY, USA: Curran.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-C493-C
Abstract
Learning in real-time applications, e.g., online approximation of the inverse dynamics model for model-based robot control, requires fast online regression techniques. Inspired by local learning, we propose a method to speed up standard Gaussian Process regression (GPR) with local GP models (LGP). The training data is partitioned in local regions, for each an individual GP model is trained. The prediction for a query point is performed by weighted estimation using nearby local models. Unlike other GP approximations, such as mixtures of experts, we use a distance based measure for partitioning of the data and weighted prediction. The proposed method achieves online learning and prediction in real-time. Comparisons with other nonparametric regression methods show that LGP has higher accuracy than LWPR and close to the performance of standard GPR and nu-SVR.