Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Multi-way set enumeration in real-valued tensors

MPG-Autoren
/persons/resource/persons83929

Georgii,  E
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84265

Tsuda,  K
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84193

Schölkopf,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Georgii, E., Tsuda, K., & Schölkopf, B. (2009). Multi-way set enumeration in real-valued tensors. Proceedings of the 2nd Workshop on Data Mining using Matrices and Tensors (DMMT 2009), 32-41.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-C495-8
Zusammenfassung
The analysis of n-ary relations receives attention in many different fields, for instance biology, web mining, and social studies. In the basic setting, there are n sets of instances, and each observation associates n instances, one from each set. A common approach to explore these n-way data is the search for n-set patterns. An n-set pattern consists of specific subsets of the n instance sets such that all possible n- ary associations between the corresponding instances are observed. This provides a higher-level view of the data, revealing associative relationships between groups of instances. Here, we generalize this approach in two respects. First, we tolerate missing observations to a certain degree, that means we are also interested in n-sets where most (although not all) of the possible combinations have been recorded in the data. Second, we take association weights into account. More precisely, we propose a method to enumerate all n- sets that satisfy a minimum threshold with respect to the average association weight. Non-observed associations obtain by default a weight of zero. Technically, we solve the enumeration task using a reverse search strategy, which allows for effective pruning of the search space. In addition, our algorithm provides a ranking of the solutions and can consider further constraints. We show experimental results on artificial and real-world data sets from different domains.