日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

会議論文

Understanding Brain Connectivity Patterns during Motor Imagery for Brain-Computer Interfacing

MPS-Authors
/persons/resource/persons83948

Grosse-Wentrup,  M
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Grosse-Wentrup, M. (2009). Understanding Brain Connectivity Patterns during Motor Imagery for Brain-Computer Interfacing. Advances in neural information processing systems 21: 22nd Annual Conference on Neural Information Processing Systems 2008, 561-568.


引用: https://hdl.handle.net/11858/00-001M-0000-0013-C4AB-7
要旨
EEG connectivity measures could provide a new type of feature space for inferring a subjectamp;amp;lsquo;s intention in Brain-Computer Interfaces (BCIs). However, very little is known on EEG connectivity patterns for BCIs. In this study, EEG connectivity during motor imagery (MI) of the left and right is investigated in a broad frequency range across the whole scalp by combining Beamforming with Transfer Entropy and taking into account possible volume conduction effects. Observed connectivity patterns indicate that modulation intentionally induced by MI is strongest in the gamma-band, i.e., above 35 Hz. Furthermore, modulation between MI and rest is found to be more pronounced than between MI of different hands. This is in contrast to results on MI obtained with bandpower features, and might provide an explanation for the so far only moderate success of connectivity features in BCIs. It is concluded that future studies on connectivity based BCIs should focus on high frequency bands and con side r ex peri mental paradigms that maximally vary cognitive demands between conditions.