English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Learning motor primitives for robotics

MPS-Authors
/persons/resource/persons84021

Kober,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84135

Peters,  J
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kober, J., & Peters, J. (2009). Learning motor primitives for robotics. In IEEE International Conference on Robotics and Automation (ICRA '09) (pp. 2112-2118). Piscataway, NJ, USA: IEEE Service Center.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-C4EF-2
Abstract
The acquisition and self-improvement of novel motor skills is among the most important problems in robotics. Motor primitives offer one of the most promising frameworks for the application of machine learning techniques in this context. Employing an improved form of the dynamic systems motor primitives originally introduced by Ijspeert et al. [2], we show how both discrete and rhythmic tasks can be learned using a concerted approach of both imitation and reinforcement learning. For doing so, we present both learning algorithms and representations targeted for the practical application in robotics. Furthermore, we show that it is possible to include a start-up phase in rhythmic primitives. We show that two new motor skills, i.e., Ball-in-a-Cup and Ball-Paddling, can be learned on a real Barrett WAM robot arm at a pace similar to human learning while achieving a significantly more reliable final performance.