English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Report

The effect of pairwise neural correlations on global population statistics

MPS-Authors
/persons/resource/persons84066

Macke,  JH
Research Group Computational Vision and Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83805

Bethge,  M
Research Group Computational Vision and Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Ressource
No external resources are shared
Fulltext (public)

MPIK-TR-183.pdf
(Publisher version), 394KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Macke, J., Opper, M., & Bethge, M.(2009). The effect of pairwise neural correlations on global population statistics (183). Tübingen, Germany: Max Planck Institute for Biological Cybernetics.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-C5A1-4
Abstract
Simultaneously recorded neurons often exhibit correlations in their spiking activity. These correlations shape the statistical structure of the population activity, and can lead to substantial redundancy across neurons. Here, we study the effect of pairwise correlations on the population spike count statistics and redundancy in populations of threshold-neurons in which response-correlations arise from correlated Gaussian inputs. We investigate the scaling of the redundancy as the population size is increased, and compare the asymptotic redundancy in our models to the corresponding maximum- and minimum entropy models.