English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

A Predictive Model for Imitation Learning in Partially Observable Environments

MPS-Authors
There are no MPG-Authors available
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Boularias, A. (2008). A Predictive Model for Imitation Learning in Partially Observable Environments. In A. Wani, X.-W. Chen, D. Casasent, L. Kurgan, T. Hu, & K. Hafeez (Eds.), 2008 Seventh International Conference on Machine Learning and Applications (pp. 83-90). Piscataway, NJ, USA: IEEE.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-C629-C
Abstract
Learning by imitation has shown to be a powerful paradigm for automated learning in autonomous robots. This paper presents a general framework of learning by imitation for stochastic and partially observable systems. The model is a Predictive Policy Representation (PPR) whose goal is to represent the teacher‘s policies without any reference to states. The model is fully described in terms of actions and observations only. We show how this model can efficiently learn the personal behavior and preferences of an assistive robot user.