Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Conference Paper

A Predictive Model for Imitation Learning in Partially Observable Environments

There are no MPG-Authors in the publication available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Boularias, A. (2008). A Predictive Model for Imitation Learning in Partially Observable Environments. In A. Wani, X.-W. Chen, D. Casasent, L. Kurgan, T. Hu, & K. Hafeez (Eds.), 2008 Seventh International Conference on Machine Learning and Applications (pp. 83-90). Piscataway, NJ, USA: IEEE.

Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-C629-C
Learning by imitation has shown to be a powerful paradigm for automated learning in autonomous robots. This paper presents a general framework of learning by imitation for stochastic and partially observable systems. The model is a Predictive Policy Representation (PPR) whose goal is to represent the teacher‘s policies without any reference to states. The model is fully described in terms of actions and observations only. We show how this model can efficiently learn the personal behavior and preferences of an assistive robot user.