Help Privacy Policy Disclaimer
  Advanced SearchBrowse




Conference Paper

Metropolis Algorithms for Representative Subgraph Sampling


Borgwardt,  K
Max Planck Institute for Biological Cybernetics, Max Planck Society;
Former Research Group Machine Learning and Computational Biology, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available

Hübler, C., Kriegel, H.-P., Borgwardt, K., & Ghahramani, Z. (2008). Metropolis Algorithms for Representative Subgraph Sampling. In F. Giannotti, D. Gunopulos, F. Turini, C. Zaniolo, N. Ramakrishnan, & X. Wu (Eds.), 2008 Eighth IEEE International Conference on Data Mining (pp. 283-292). Piscataway, NJ, USA: IEEE.

Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-C637-C
While data mining in chemoinformatics studied graph data with dozens of nodes, systems biology and the Internet are now generating graph data with thousands and millions of nodes. Hence data mining faces the algorithmic challenge of coping with this significant increase in graph size: Classic algorithms for data analysis are often too expensive and too slow on large graphs. While one strategy to overcome this problem is to design novel efficient algorithms, the other is to 'reduce' the size of the large graph by sampling. This is the scope of this paper: We will present novel Metropolis algorithms for sampling a 'representative' small subgraph from the original large graph, with 'representative' describing the requirement that the sample shall preserve crucial graph properties of the original graph. In our experiments, we improve over the pioneering work of Leskovec and Faloutsos (KDD 2006), by producing representative subgraph samples that are both smaller and of higher quality than those produced by other methods from the literature.