English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Distribution-free Learning of Bayesian Network Structure

MPS-Authors
/persons/resource/persons84243

Sun,  X
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Sun, X. (2008). Distribution-free Learning of Bayesian Network Structure. In W. Daelemans, B. Goethals, & K. Morik (Eds.), Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2008, Antwerp, Belgium, September 15-19, 2008 (pp. 423-439). Berlin, Germany: Springer.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-C73B-7
Abstract
We present an independence-based method for learning Bayesian network (BN) structure without making any assumptions on the probability distribution of the domain. This is mainly useful for continuous domains. Even mixed continuous-categorical domains and structures containing vectorial variables can be handled. We address the problem by developing a non-parametric conditional independence test based on the so-called kernel dependence measure, which can be readily used by any existing independence-based BN structure learning algorithm. We demonstrate the structure learning of graphical models in continuous and mixed domains from real-world data without distributional assumptions. We also experimentally show that our test is a good alternative, in particular in case of small sample sizes, compared to existing tests, which can only be used in purely categorical or continuous domains.