English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

The skew spectrum of graphs

MPS-Authors
There are no MPG-Authors available
External Ressource
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kondor, R., & Borgwardt, K. (2008). The skew spectrum of graphs. In W. Cohen, A. McCallum, & S. Roweis (Eds.), ICML '08: Proceedings of the 25th international conference on Machine (pp. 496-503). New York, NY, USA: ACM Press.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0013-C847-3
Abstract
The central issue in representing graph-structured data instances in learning algorithms is designing features which are invariant to permuting the numbering of the vertices. We present a new system of invariant graph features which we call the skew spectrum of graphs. The skew spectrum is based on mapping the adjacency matrix of any (weigted, directed, unlabeled) graph to a function on the symmetric group and computing bispectral invariants. The reduced form of the skew spectrum is computable in O(n3) time, and experiments show that on several benchmark datasets it can outperform state of the art graph kernels.