English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Report

Unsupervised Bayesian Time-series Segmentation based on Linear Gaussian State-space Models

MPS-Authors
/persons/resource/persons83858

Chiappa,  S
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Chiappa, S.(2008). Unsupervised Bayesian Time-series Segmentation based on Linear Gaussian State-space Models (171). Tübingen, Germany: Max Planck Institute for Biological Cybernetics.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-C90F-C
Abstract
Unsupervised time-series segmentation in the general scenario in which the number of segment-types
and segment boundaries are a priori unknown is a fundamental problem in many applications and requires an accurate segmentation model as well as a way of determining an appropriate number of segment-types.
In most approaches, segmentation and determination of number of segment-types are addressed
in two separate steps, since the segmentation model assumes a predefined number of segment-types.
The determination of number of segment-types is thus achieved by training and comparing several separate models. In this paper, we take a Bayesian approach to a segmentation model based on linear Gaussian state-space models to achieve structure selection within the model. An appropriate prior distribution on the parameters is used to enforce a sparse parametrization, such that the model automatically selects the smallest number of underlying dynamical systems that explain the data well and a parsimonious structure for each dynamical system. As the resulting model is computationally intractable, we introduce a variational approximation, in which a reformulation of the problem enables to use an efficient inference algorithm.