Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Real-Time Fetal Heart Monitoring in Biomagnetic Measurements Using Adaptive Real-Time ICA

MPG-Autoren
/persons/resource/persons84295

Waldert,  S
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84193

Bensch M, Bogdan M, Rosenstiel W, Schölkopf,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Waldert, S., Bensch M, Bogdan M, Rosenstiel W, Schölkopf, B., Lowery CL, Eswaran, H., & Preissl, H. (2007). Real-Time Fetal Heart Monitoring in Biomagnetic Measurements Using Adaptive Real-Time ICA. IEEE Transactions on Biomedical Engineering, 54(10), 1867-1874. doi:10.1109/TBME.2007.895749.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0013-CBC1-8
Zusammenfassung
Electrophysiological signals of the developing fetal brain and heart can be investigated by fetal magnetoencephalography (fMEG). During such investigations, the fetal heart activity and that of the mother should be monitored continuously to provide an important indication of current well-being. Due to physical constraints of an fMEG system, it is not possible to use clinically established heart monitors for this purpose. Considering this constraint, we developed a real-time heart monitoring system for biomagnetic measurements and showed its reliability and applicability in research and for clinical examinations. The developed system consists of real-time access to fMEG data, an algorithm based on Independent Component Analysis (ICA), and a graphical user interface (GUI). The algorithm extracts the current fetal and maternal heart signal from a noisy and artifact-contaminated data stream in real-time and is able to adapt automatically to continuously varying environmental parameters. This algorithm has been na med Adaptive Real-time ICA (ARICA) and is applicable to real-time artifact removal as well as to related blind signal separation problems.