English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Learning Dense 3D Correspondence

MPS-Authors
/persons/resource/persons84235

Steinke,  F
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons84193

Schölkopf,  B
Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

/persons/resource/persons83815

Blanz,  V
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Steinke, F., Schölkopf, B., & Blanz, V. (2007). Learning Dense 3D Correspondence. In B. Schölkopf, J. Platt, & T. Hoffman (Eds.), Advances in Neural Information Processing Systems 19 (pp. 1313-1320). Cambridge, MA, USA: MIT Press.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0013-CBEB-C
Abstract
Establishing correspondence between distinct objects is an important and nontrivial task: correctness of the correspondence hinges on properties which are difficult to capture in an a priori criterion. While previous work has used a priori criteria which in some cases led to very good results, the present paper explores whether it is possible to learn a combination of features that, for a given training set of aligned human heads, characterizes the notion of correct correspondence. By optimizing this criterion, we are then able to compute correspondence and morphs for novel heads.